1. Duan, R., Boland, M.R., Moore, J.H. and Chen, Y., (2019). ODAL: a one-shot distributed algorithm to perform logistic regressions on electronic health records data from multiple clinical sites.Pacific Symposium on Biocomputing 2019 (pp. 30-41).
  2. Duan, R., Boland, M., Liu, Z., Liu, Y., Chang, H., Xu., H, Chu, H., Schmid, C., Forrest, C., Holmes, J., Schuemie, M.J., Berlin, J.A., Moore, J.H. and Chen,Y., (2019). Learning from electronic health records across multiple sites: a computationally and statistically efficient distributed algorithm.Journal of the American Medical Informatics Association 27(3), pp.376-385.
  3. Duan, R., Luo, C., Schuemie, M.J., Tong, J., Liang, J., Boland, M.R., Bian, J., Xu, H., Berlin, J.A., Moore, J.H., Mahoney, K.B. and Chen, Y., (2020). Learning from local to global – an efficient distributed algorithm for modeling time to event data.Journal of the American Medical Informatics Association 27(7), pp.1028–1036
  4. Tong, J., Duan, R., Li, R., Scheuemie, M.J., Moore, J.H. and Chen, Y., 2020, January. Robust-ODAL: Learning from heterogeneous health systems without sharing patient-level data.In Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing (Vol. 25, p. 695). NIH Public Access.
  5. Duan, R., Chen, Z., Tong, J., Luo, C., Lyu, T., Tao, C., Maraganore, D., Bian, J. and Chen, Y., 2020. Leverage Real-world Longitudinal Data in Large Clinical Research Networks for Alzheimer’s Disease and Related Dementia (ADRD)medRxiv.
  6. Tong, J., Chen, Z., Duan, R., Lo-Ciganic, W.H., Lyu, T., Tao, C., Merkel, P.A., Kranzler, H.R., Bian, J. and Chen, Y., 2020. Identifying Clinical Risk Factors for Opioid Use Disorder using a Distributed Algorithm to Combine Real-World Data from a Large Clinical Data Research NetworkmedRxiv.